Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid.

نویسندگان

  • J C Vera
  • C I Rivas
  • R H Zhang
  • C M Farber
  • D W Golde
چکیده

The cellular accumulation of vitamin C, a substance critical to human physiology, is mediated by transporters located at the cell membrane, and is regulated in a cell-specific manner. Neoplastic cells may have special needs for vitamin C. Therefore, we investigated the transport of vitamin C in a human myeloid leukemia cell line (HL-60). The HL-60 cells lacked the capacity to transport the reduced form of vitamin C, ascorbic acid, but they showed a remarkable ability to transport the oxidized form of vitamin C, dehydroascorbic acid (DHA). Uptake-accumulation studies indicated that the HL-60 cells accumulated ascorbic acid when provided with DHA. Kinetic analysis showed the presence of two functional activities involved in the uptake of DHA, one with low affinity and one with high affinity. Cytochalasin B and phloretin, which inhibit the passage of glucose through the facilitative glucose transporters, also inhibited the transport of DHA by HL-60 cells. Transport of DHA was completed by D- but not L-hexoses, and was sensitive to D-hexose-dependent counter transport acceleration. These data support the concept that HL-60 myeloid leukemic cells transport DHA through the facilitative hexose transporters (glucose transporters) and accumulate the reduced form of ascorbic acid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient transport and accumulation of vitamin C in HL-60 cells depleted of glutathione.

Human myeloid leukemia cells (HL-60) transport only the oxidized form of vitamin C (dehydroascorbic acid) and accumulate the vitamin in the reduced form, ascorbic acid. We performed a detailed study of the role of glutathione in the intracellular trapping/accumulation of ascorbic acid in HL-60 cells. Uptake studies using HL-60 cells depleted of glutathione by treatment with L-buthionine-(S,R) s...

متن کامل

Colony-stimulating factors signal for increased transport of vitamin C in human host defense cells.

Although serum concentrations of ascorbic acid seldom exceed 150 micromol/L, mature neutrophils and mononuclear phagocytes accumulate millimolar concentrations of vitamin C. Relatively little is known about the mechanisms regulating this process. The colony-stimulating factors (CSFs), which are central modulators of the production, maturation, and function of human granulocytes and mononuclear ...

متن کامل

Transport of ascorbic acid and dehydroascorbic acid by pancreatic islet cells from neonatal rats.

Several amidated biologically active peptides such as pancreastatin, thyrotropin-releasing hormone, pancreatic polypeptide and amylin are produced in endocrine pancreatic tissue which contains the enzyme necessary for their final processing, i.e. peptidylglycine alpha-amidating mono-oxygenase (EC 1.14.17.3). The enzyme needs ascorbic acid for activity as well as copper and molecular oxygen. The...

متن کامل

Stromal cell oxidation: a mechanism by which tumors obtain vitamin C.

Human tumors may contain high concentrations of ascorbic acid, but little is known about how they acquire the vitamin. Certain specialized cells can transport ascorbic acid directly through a sodium ascorbate cotransporter, but in most cells, vitamin C enters through the facilitative glucose transporters (GLUTs) in the form of dehydroascorbic acid, which is then reduced intracellularly and reta...

متن کامل

Stromal Cell Oxidation : A Mechanism by Which Tumors

Human tumors may contain high concentrations of ascorbic acid, but little is known about how they acquire the vitamin. Certain specialized cells can transport ascorbic acid directly through a sodium ascorbate cotransporter, but in most cells, vitamin C enters through the facilitative glucose transporters (GLUTs) in the form of dehydroascorbic acid, which is then reduced intracellularly and reta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 84 5  شماره 

صفحات  -

تاریخ انتشار 1994